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A number of  properties of  small perturbations of  a fluid experiencing solid-body rotat ion are widely known that can 
be classified as a manifestation of  unusual flow "elastici ty." Such properties are the wave nature of the development of  
perturbations and the phenomenon of forming "Taylor  columns." The latter result is called the T a y l o r -  Proudman 
theorem, and states that in slow motion of  a sohd body in a rotating fluid the flow is two-dimensional to a first approxima- 
tion (is independent of  the coordinate z along the axis of  rotation).  The existence of  this kind of  flow structure, first 
predicted theoretically, was later confirmed in a number of  experiments [ 1 ]. Both the properties of  the wave motions [ 1, 2] 
and phenomena of  the Taylor column type are evidence of  the strong anisotropy of  the "elastic" properties of  the medium. 
The elasticity is associated with flexure of  the vortex lines and is less the less the lines flex. If  the field of  the perturbations 
is two-dimensional, so that the motion occurs without bending of  vortex lines, then no elasticity appears, and the flow is of 
the Taylor column type. The cause of  these fluid properties is the gyroscopic behavior of  the rotating liquid particles (see 
[3-5]). On the basis of this qualitative picture one can predict that any stable vortex flow possesses elastic properties. How- 
ever, in general fluid particles are also subject to strains. The lat ter  may play a destabilizing role in a flow, diminishing its 
elasticity and even leading to instability [5-7]. Examples of  how the presence of  strains alters the properties of  wave m o t i o n  
in stable flows are given in [8, 9]. The question arises: Can one find phenomena of  the Taylor column type in vortex 
flows which differ from the solid-body rotat ion form? Three examples are constructed below to show that these phenomena 
are theoretically possible. The method of  proof  in each case is practically a repeat of  the proof  of  the T a y l o r - P r o u d m a n  
theorem. All the examples consider a model o f  an ideal incompressible fluid with constant density. 

1. Flows with Circular Streamlines. We consider an axisymmetric steady-state flow with circular streamlines. We 
introduce cylindrical coordinates ( r  r, z) with the z axis directed along the symmetry axis. Only the angular component  
of  the velocity U = U(r) and the axial component  of  the vorticity f t  = dU/dr + U/r differ from zero. In this flow let there 
be an axisymmetric solid body whose projection in the plane z = const is the ring a < r < b. This body moves along the z 
axis with a small constant speed w o. It is necessary to find the velocity field of  the fluid. 

We assume that the quanti ty w o/(b - a)12 is so small that the fields of  the perturbations are described by the 
linearized system of  equations 

2 U  Op Op Ov v , O w  f 2 v = 0 , - - u =  - -  0 + - - ~ - - ~ - z  = 0 ,  (1.1) 
r - ~ - r '  - -  O z '  Or r 

where u, v, and w are components of  the velocity field per turbat ions  corresponding to the coordinates ~,  r, z; p is the field 
of  pressure perturbations. Because of  the problem symmetry the perturbation fields are independent of  ~ .  

We achieve steady-state by converting to a coordinate system fixed in the body.  From the first equation in Eq. (1.1) 
we have that  v = 0, from which (after differentiation with respect to z) we have u = u(r), and from the continuity equation 
we have that  w = w(r). By determining w(r) from the boundary conditions, we come to the result that the desired velocity 
field is given by the inequalities 

�9 w o for  r~a,  r>b, 
v(r) O,w(r)={Ofor a<r<b.  (1.2) 

The function u(r) can be assigned arbitrarily. The case u(r) ~ 0 is equivalent to a change in U(r). Thus, we have shown 
that, as in the case of  a flow exhibiting solid-body rotat ion [ 1 ], the slowly moving body presses through the entire column 
of  fluid. We note that the field of  the perturbations is not  at tenuated for z -+ + oo. I f  we require that  there be attenuation, 
then the solution will be unsteady, and will correspond to motion with radiating waves. For  the solid-body rotat ion case it 
has been shown [ 1 ] that  such unsteady conditions tend to the solutions with the Taylor columns for t -* oo. The tangential 
discontinuities at r = a, r = b in Eq. (1.2) are of  the same type as in inertial boundary layers [1]. The circular flow case is 
a direct generalization of  solid-body rotat ion of  fluid, and it is therefore natural that  we have a result similar to the T a y l o r -  
Proudman theorem. 

2. Plane-Parallel Flow. A more unexpected result is that  similar results can be obtained for plane parallel flOW. we 
shall examine such a flow. We introduce rectangular coordinates x, y, z with the x axis directed along the flow, such that  
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the unique non-zero component of  velocity depends only on y: U -- U(y). Let there be a cylindrical body in this flow 
such that the generator of  the cylinder is parallel to the x axis. This body moves along the z axis with a small constant 
velocity w o. It is necessary to find the velocity field of  the fluid. 

The argument proceeds along the same lines as in the previous example. Because of  the problem symmetry the 
fields of the perturbations are independent of  x. The linearized equations of  motion give 

U'v = O, OplOg = O, Op/Oz ~ O, ovlay %- ow/az ~ O. 

Here u, v, and w are the components of  the field of  velocity perturbations corresponding to the coordinates x, y, and z. 
From the first equation we have v = 0, from the second and third we have p = 0, and from the fourth we have that w = 
w(y). Let the projection of  the body on the plane (x, y) be the strip a < y < b. By satisfying the boundary conditions 
we obtain that the velocity field (in the coordinate system fixed in the cylinder) is given in the form 

{oWO for g<Za, Y >  b, 
v ( g ) = O , w ( g ) =  for a ~ g ~ b .  

The function u(y, z) can be given arbitrarily. 

Thus, the velocity field in the problem must be two-dimensional, so that in its motion the body presses through the 
entire layer of  fluid a < y < b. 

3. Axisymmetric Flow with Straight Streamlines. In examples 1 and 2 the vortex lines of  the main flow were 
straight. It is shown in this example that similar results can be obtained also for flows with curved vortex lines. 

We consider axisymmetric flow with straight streamlines (e.g., flow in a tube). Let z be the flow symmetry axis. 
In the cylindrical coordinate system (~  r, z) only the z velocity component W = W(r) is nonzero. This flow has a solid 
strip (a ~ r ~ b, ~0 = %, - -  oo ~ z ~ § co), which rotates slowly around the z axis at constant angular velocity co o, such 
that ~o = Wo t. We require to find the velocity field corresponding to this flow problem. 

In a coordinate system rotating with velocity c% the fields of the perturbations do not depend on z and t. After 
linearization of  the equations of  motion, written in this system, by a method similar to that used above, we obtain the 
conditions v = 0, u = u(r); the condition w =w(r ,  ~) can be assigned arbitrarily. The notation for the components of  the 
velocity perturbations are the same as in example 1. By satisfying the boundary conditions we obtain the result that the 
cylindrical volume of  fluid a < r < b (a ring) rotates in solid-body fashion along with the strip. 

We note that in all the examples nothing has been said about flow stability. The problem of stability of  these flows 
of an ideal fluid is complex, and for the main part there are as yet no solutions [5, 10, 11 ]. 

The examples presented illustrate the uniqueness of  the gyroscopic properties of  vortex flows, and the conditions 
for which these properties, even with shear layers present, can generate phenomena which are consonant with Taylor columns. 

In a real viscous fluid the presence of  shear layers in the flow, together with the adhesion conditions at the body 
boundaries, will introduce additional perturbations into the stream. Therefore an experimental verification of  the flows 
considered will encounter considerable difficulty. 

The mathematical formulation of  the results obtained is similar. In the examples listed there are not smooth steady- 
state solutions to the flow problems in the linear approximation. The solutions here are discontinuous and are of  the Taylor 
column type. 
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